Structural Basis for Epibatidine Selectivity at Desensitized Nicotinic Receptors

Richard A. Pennington, Fan Gao, Steven M. Sine, and Richard J. Prince

School of Biological Sciences, University of Manchester, Manchester, United Kingdom (R.A.P., R.J.P.); and Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota (F.G., S.M.S.)

Received June 7, 2004; accepted October 19, 2004

ABSTRACT

The agonist binding sites of the fetal muscle nicotinic acetylcholine receptor are formed at the interfaces of α -subunits and neighboring γ - and δ -subunits. When the receptor is in the nonconducting desensitized state, the α - γ site binds the agonist epibatidine 200-fold more tightly than does the α - δ site. To determine the structural basis for this selectivity, we constructed γ/δ -subunit chimeras, coexpressed them with complementary wild-type subunits in HEK 293 cells, and determined epibatidine affinity of the resulting complexes. The results reveal three determinants of epibatidine selectivity: γ 104–117/ δ 106– δ 119, γ 164–171/ δ 166–177, and γ Pro190/ δ Ala196. Point mutations reveal that three sequence

differences within the $\gamma 104-117/\delta 106-\delta 119$ region are determinants of epibatidine selectivity: $\gamma Lys104/\delta Tyr106,~\gamma Ser111/\delta Tyr113,~and~\gamma Tyr117/\delta Tyr119.$ In the δ -subunit, simultaneous mutation of these residues to their γ equivalent produces high affinity, γ -like epibatidine binding. However, converting γ to δ affinity requires replacement of the $\gamma 104-117$ segment with δ sequence, suggesting interplay of residues in this region. The structural basis for epibatidine selectivity is explained by computational docking of epibatidine to a homology model of the α - γ binding site.

The structure of the nicotinic acetylcholine receptor (nAChR) agonist binding sites has been the subject of intense investigation for more than 20 years. Functional and biochemical data indicate that there are two binding sites for ACh located within the $\alpha_{2\beta}\delta\gamma$ oligomeric structure of the receptor found in embryonic muscle, and early affinity labeling studies and mutagenesis experiments provided strong evidence that the α -subunits play a major role in ligand binding. In particular, three loops of the α -subunit, centered on residues Tyr93, Trp149, and Cys192/Cys193, respectively (loops A-C) were proposed to form the core of the agonist binding site. However, it has become clear in recent years that the nAChR agonist binding sites are formed at the interfaces of the α -subunits with their neighboring γ/ϵ - and δ-subunits (reviewed in Sine, 2002). One of the main lines of evidence that supports an interface model is that the two binding sites are not identical and differ in their affinities for different types of ligands. For example, in the resting state of the receptor, the agonists carbamylcholine and acetylcholine

Previous studies in our laboratories probed the structure of the nAChR using chimeric subunits to identify amino acid differences between γ and δ that determine agonist and antagonist selectivity in the resting, activatible state of the receptor (Sine, 1993, 1997; Bren and Sine, 1997; Prince and Sine, 1996; Molles et al., 2002b). The emerging overall picture showed that four loops from the γ - and δ -subunits (loops D–G), well separated along the primary sequence, contribute to each binding site interface. Over the last few years, our understanding of the nAChR binding sites has been greatly extended by the atomic structural determination of an ACh binding protein (AChBP) derived from snail glial cells (Brejc

doi:10.1124/mol.104.003665.

ABBREVIATIONS: nAChR, nicotinic acetylcholine receptor; ACh, acetylcholine; AChBP, ACh binding protein; HEK, human embryonic kidney; α H, human α -subunit.

bind around 30-fold more tightly to the α - δ than to the α - γ binding site (Prince and Sine, 1996), whereas curariform antagonists bind more tightly to the α - γ than to the α - δ site (Blount and Merlie, 1989; Sine and Claudio, 1991). This pharmacological nonequivalence of the nAChR agonist binding sites, together with affinity labeling studies (Czajkowski and Karlin, 1995; Martin et al., 1996; Chiara and Cohen, 1997; Chiara et al., 1998, 1999) has led to a model in which the binding sites contain residues from the γ - and δ -subunits in addition to the α -subunit and in which differences in ligand affinity are caused by sequence differences between the γ - and δ -subunits (Sine, 2002).

This work was supported by a grant from the United Kingdom Biotechnology and Biological Sciences Research Council (to R.J.P.) and by National Institutes of Health grant NS31744 (to S.M.S.).

Article, publication date, and citation information can be found at http://molpharm.aspetjournals.org.

et al., 2001). AChBP has striking homology with the N-terminal extracellular domains of the nAChR subunits and has confirmed many aspects of earlier models. AChBP has been cocrystalized with carbamylcholine and nicotine, providing insights into agonist docking to the receptor (Celie et al., 2004). However, many questions about the structure of the nAChR agonist binding sites are still unanswered. In particular, how the structure of AChBP relates to the various conformational states of the nAChR remains unknown.

The present study extends our use of γ/δ -subunit chimeras to identify determinants of selectivity for the agonist epibatidine in fetal nAChRs in the desensitized state. So far, chimera studies on receptors in the desensitized state have not been possible because classic agonists such as ACh and carbamylcholine do not distinguish between the two agonist binding sites of desensitized receptors, and competitive antagonists do not appreciably stabilize the desensitized state. However, we showed previously that epibatidine binds with higher affinity to the α - γ binding site than to the α - δ site of muscle nAChRs (i.e., with opposite selectivity to carbamylcholine and ACh); furthermore, the binding site selectivity of epibatidine is maintained when the receptor changes functional state from activatible to desensitized (Prince and Sine, 1998a,b). Taking advantage of the unique site and state selectivity of epibatidine, we show that three regions of the N-terminal domain of the γ - and δ -subunits determine (-)-epibatidine selectivity in the desensitized state and identify individual residues that confer this site selectivity. The identified selectivity determinants are explained by computational docking of epibatidine to a structural model of the high-affinity α - γ binding site.

Materials and Methods

Materials. ¹²⁵I-labeled α-bungarotoxin was purchased from Amersham Biosciences (Little Chalfont, Buckinghamshire, UK). Human embryonic kidney (HEK) 293 cells were purchased from the American Type Culture Collection (Manassas, VA). (–)-Epibatidine, carbamylcholine, proadifen, fetal calf serum, and bovine serum albumin were purchased from Sigma (St. Louis, MO). Dulbecco's modified Eagle's medium, penicillin, and streptomycin were purchased from Invitrogen (Carlsbad, CA). All other chemicals were obtained from BDH (Poole, Dorset, UK). The sources of the nicotinic nAChR subunits were as described previously (Sine, 1993).

Mutagenesis. nAChR subunits were subcloned into the cytomegalovirus-based expression vector pRBG4 as described previously (Prince and Sine, 1998b). Subunit chimeras of the form $\gamma_n \delta_{225} \gamma$ were constructed by oligonucleotide-bridging mutagenesis, as described previously (Sine, 1993). $\gamma_n \delta_{225} \gamma$ indicates a chimera that contains γ sequence for the first n amino acids followed by δ sequence to amino acid 225 (the start of the first transmembrane domain) and γ sequence thereafter. Point mutations were installed using either oligonucleotide-bridging or using the QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA). All mutations were verified by DNA sequencing and restriction mapping.

Cell Culture and Receptor Expression. HEK 293 cells were grown in Dulbecco's modified Eagle's medium containing 10% fetal calf serum, 50 IU/ml penicillin, and 50 μ g/ml streptomycin. At around 40% confluence, cells were transiently transfected using calcium phosphate precipitation as described previously (Prince and Sine, 1998b). To express subunit-omitted pentamers of the form $\alpha_2\beta\chi_2$ (where χ is γ , δ , or chimera), cells were transfected with human α , mouse β , and mouse χ cDNAs in the ratio 2:1:2. In all experiments, 13.5 μ g of α -subunit cDNA was used per 10-cm tissue culture plate of cells. Cells were incubated at 37°C for 24 h after transfection

followed by 48 h at 31°C before use in ligand binding assays. Complexes containing all mouse subunits were produced as described previously (Prince and Sine, 1998a).

Radioligand Binding Assay. Cells were harvested from tissue culture plates and resuspended in potassium Ringer's solution (140 mM KCl, 5.4 mM NaCl, 1.8 mM CaCl₂, 1.7 mM MgCl₂, 25 mM HEPES, and 30 mg/l bovine serum albumin; pH adjusted to 7.4 with NaOH). Agonist binding was determined as described previously (Prince and Sine, 1998b). In brief, cells were equilibrated with agonist and 100 µM concentrations of the desensitizing agent proadifen for 45 min before the addition of 5 nM $^{125}\text{I-labeled}$ $\alpha\text{-bungarotoxin.}$ Proadifen locks the receptor in the high-affinity desensitized state and thus allows ligand binding studies to be performed on a fixed conformational state of the receptor. The cells were then incubated for a further 30 to 40 min to allow occupancy of up to 50% of the binding sites by 125 I-labeled α -bungarotoxin. The total number of binding sites was determined by incubating with 25 nM $^{125}\mbox{I-labeled}$ α -bungarotoxin for 30 to 40 min. Nonspecific binding was determined by subtracting a blank determined in the presence of 10 mM carbamylcholine. The cells were harvested onto GF-B filters (Whatman, Maidstone, UK using a Brandel cell harvester and counted in a y

Data Analysis. The following equations were fitted to our data using Prism 3.0 (GraphPad Software, San Diego, CA).

$$1 - \text{fractional occupancy} = 1 - \frac{[L]^{n_{\text{H}}}}{[L]^{n_{\text{H}}} + K^{n_{\text{H}}}}$$
 (1)

$$1-\text{fractional occupancy} = 1-P \times \frac{[L]}{[L]+K_1} - (1-P)\frac{[L]}{[L]+K_2} \endaligned (2)$$

where [L] is the concentration of competing ligand, $K_{\rm d}$ is the dissociation constant, $n_{\rm H}$ is the Hill coefficient, $K_{\rm 1}$ and $K_{\rm 2}$ are dissociation constants, and P is the fraction of sites with dissociation constant $K_{\rm 1}$. To normalize data between experiments, we calculated the value log $(K_{\rm d} \ {\rm mutant}/K_{\rm d} \ \alpha_2\beta\gamma_2)$. Statistical comparisons were made on log $K_{\rm d}$ values using one-way analysis of variance with Tukey's post-test. Differences were considered significant when P < 0.05.

Homology Modeling and Epibatidine Docking. A structural model of extracellular portions of the α - γ -subunit pair of the fetal mouse receptor was constructed using the homology modeling software JACKAL 1.5 (http://trantor.bioc.columbia.edu) based on sequence alignment with AChBP determined by scanning mutagenesis of the acetylcholine receptor ϵ -subunit (Sine et al., 2002). JACKAL 1.5 generates the structural model using an artificial evolution strategy that considers the protein to be modeled on a combination of mutagenesis, insertion, and deletion operations performed on the template protein. It then determines side chain orientation using a coordinate rotamer library (Xiang and Honig, 2001) and loop prediction (Xiang et al., 2002), and it employs four levels of structural refinement and then energy minimization. The output from JACKAL was then further energy-minimized using the SANDER module of AMBER 7 (Pearlman et al., 1995). Partial atomic charges were then assigned to each atom of the α - and γ -subunits using the restrained electrostatic potential charge model of AMBER 7. Partial atomic charges for protonated epibatidine were obtained from the electrostatic potential fitted charges derived according to the HF/6-31* quantum mechanics calculation provided in the GAUSSIAN 98 software package (Frish et al., 1998). Docking simulation of epibatidine was done using AUTODOCK 3.0.3 (Morris et al., 1996), which uses the Lamarckian genetic algorithm, and grid sizes of $40 \times 40 \times 40$ (grid spacing, 0.375 Å) were used. Ten docked ligand-receptor complexes were produced, and the predominant epibatidine conformation was selected as the most probable docking orientation in the α - γ binding site.

Results

To simplify interpretation of our results, we performed experiments with subunit-omitted complexes that form pentamers of the form $\alpha_2\beta\chi_2$ where χ is γ , δ , or chimera (Sine and Claudio, 1991). Unlike native heteropentamers, the two binding sites in subunit-omitted complexes are formed by α - and identical non- α -subunits (Sine, 1993). To maximize our signal, we took advantage of the 5- to 10-fold increase in expression conferred by the human α -subunit (α H) when combined with mouse non- α -subunits (Prince and Sine, 1996). As described previously, αH increases expression without altering binding site selectivity for carbamylcholine. We found that in the presence of the desensitizing agent proadifen (100 μ M), $\alpha H_2 \beta \gamma_2$ complexes bound epibatidine with ~200-fold higher affinity than $\alpha H_2\beta\delta 2$ complexes (Fig. 1). This degree of binding site selectivity is similar to that observed between the α - γ and α - δ binding sites in all-mouse $\alpha_2\beta\gamma\delta$ pentameric receptors (Prince and Sine, 1998b)

To identify residues in the γ - and δ -subunits that confer epibatidine selectivity, we constructed a series of γ - δ chimeras, coexpressed each as subunit-omitted complexes with αH and mouse β , and measured epibatidine affinity in the presence of 100 μM proadifen. Our first chimera, $\gamma 100\delta 225\gamma$, contained γ sequence for the first 100 amino acids followed by δ sequence until amino acid 225 (start of the first transmembrane domain) and γ sequence thereafter. Complexes with composition $\alpha H_2 \beta (\gamma 100\delta 225\gamma)_2$ bind epibatidine with low affinity characteristic of complexes containing the wild-type δ -subunit (Figs. 1 and 2). Thus the major determinants of epibatidine selectivity are located between residues 100 and 225 of the subunits.

Our next chimera, $\gamma 117\delta 225\gamma$, yielded a dramatic increase in epibatidine affinity (Figs. 1 and 2) indicating that one or more selectivity determinants lie between positions 100 and 117. However, complexes containing $\gamma 117\delta 225\gamma$ bound epibatidine ~ 4 -fold less tightly than $\alpha H_2\beta\gamma_2$ complexes, suggesting that additional determinants are present in the C-terminal direction from position 117.

The region between residues 100 and 117 contains four known determinants of ligand selectivity at nAChR binding sites (see Fig. 3 for alignment of the N-terminal extracellular domains of the γ - and δ -subunits). γ Ser111 (aligned position is δ Tyr113) is a major determinant of conotoxin M1 selectiv-

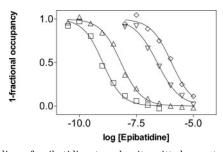


Fig. 1. Binding of epibatidine to subunit-omitted receptor complexes. Epibatidine binds with low affinity to $\alpha H_2\beta\delta_2$ (\bigtriangledown) and $\alpha H_2\beta(\gamma 100\delta 225\gamma)_2$ (\diamondsuit), high affinity to $\alpha H_2\beta\gamma_2$ (\Box), and intermediate affinity to $\alpha H_2\beta(\gamma 117\delta 225\gamma)_2$ (\triangle) complexes. The binding measurements were performed as described under Materials and Methods and are representative of at least three similar experiments. The curves are fits of eq. 1 to the data and are described by the following parameters: $\alpha H_2\beta\gamma_2$, K_d 1.06 \pm 0.11 nM, $n_{\rm H}$ 1 \pm 0.1; $\alpha H_2\beta(\gamma 100\delta 225\gamma)_2$, K_d 1092 \pm 130 nM, $n_{\rm H}$ 0.96 \pm 0.1; $\alpha H_2\beta\delta 2$, K_d 258 \pm 26 nM, $n_{\rm H}$ 0.87 \pm 0.07; and $\alpha H_2\beta(\gamma 117\delta 225\gamma)_2$, K_d 6.7 \pm 0.5 nM, $n_{\rm H}$ 0.97 \pm 0.06.

ity (Sine et al., 1995), γ Cys115 (δ Tyr117) contributes to carbamylcholine selectivity (Prince and Sine, 1996), whereas γ Ile116 (δ Val118) and γ Tyr117 (δ Tyr119) are determinants of metocurine selectivity (Sine, 1993). We therefore reasoned that one or more of these residues probably contribute to epibatidine selectivity. To test this hypothesis, we constructed additional chimeras in which the chimera junction stepped through this region (Fig. 2). We first examined γ 103 δ 225 γ and found that it conferred epibatidine affinity similar to that of α H₂ β δ ₂ complexes. However, introducing additional γ sequence in a C-terminal direction, with γ 104 δ 225 γ , increased epibatidine affinity \sim 30-fold relative to γ 103 δ 225 γ , suggesting that γ Leu104 and its equivalent δ Tyr106 are major determinants of epibatidine selectivity.

To confirm that $\gamma Leu104$ and $\delta Tyr106$ contribute to agonist selectivity, we constructed subunits containing point mutations of these residues (Fig. 4). Both $\gamma L104Y$ and $\delta Y106L$ produced clear changes in epibatidine affinity, although these were somewhat smaller than the changes observed with chimeric subunits. The collective findings suggest that the contributions of $\gamma Leu104/\delta Tyr106$ may also depend on interactions with other residues in the N-terminal domain.

Our next two chimeras, $\gamma 110\delta 225\gamma$ and $\gamma 112\delta 225\gamma$, revealed a further increase in epibatidine affinity when γ sequence was introduced at residues 111 and 112 (Fig. 2). Unfortunately, the intervening chimera, $\gamma 111\delta 225\gamma$, did not express, preventing assessment of the contributions of individual amino acids using chimeras. To probe further the contributions of residues $\gamma 111-112/\delta 113-114$, we introduced point mutations at these positions. The first pair of mutations, γS111Y and δY113S, markedly altered epibatidine affinity (Fig. 4), consistent with our measurements using chimeras. The second pair of candidate determinants, $\gamma Pro112$ / δAsp114, revealed a significant change in epibatidine affinity with γ P112D, but the affinity conferred by the converse mutation, $\delta D114P$, did not differ from that conferred by wildtype δ . Thus, the residue pair $\gamma \text{Ser}111/\delta \text{Tyr}113$ is a clear determinant of epibatidine affinity, and the pair γ Pro112/ δAsp114 may contribute to selectivity in a subunit-specific manner.

Our final chimera in this region, $\gamma 117\delta 225\gamma$ conferred 3-fold higher affinity compared with $\gamma 116\delta 225$ and $\gamma 112\delta 225\gamma$ (Fig. 2). Thus, residue $\gamma Tyr117$ and its equivalent

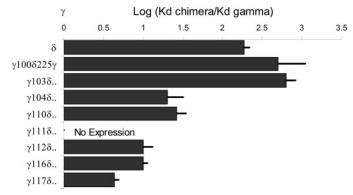


Fig. 2. Dissection of epibatidine determinants in the region $\gamma 100 - \gamma 117$. Chimeras of the form $\gamma n\delta 225\gamma$ were constructed as described in *Materials and Methods* and were expressed as subunit-omitted complexes in HEK 293 cells. Epibatidine affinity is expressed relative to that conferred by wild-type γ . Thus, γ affinity corresponds to the y-axis position. The data are the means of at least three experiments; error bars indicate S.E.M.

 δ Thr119 seem to contribute to epibatidine selectivity of the two binding sites. This hypothesis was confirmed by constructing the corresponding point mutant subunits: γ Y117T reduced epibatidine affinity \sim 4-fold, whereas the converse mutation, δ T119Y, increased affinity \sim 8-fold (Fig. 4).

Although residues $\gamma 104-117$ account for much of the \sim 200-fold selectivity of epibatidine between the γ and δ binding sites, our results indicate that at least one more determinant lies between residue 117 and the beginning of the first transmembrane domain. Contained within this segment are selectivity determinants for metocurine (γSer161/ δ Lys163), carbamylcholine (γPhe172/ δ Ile178), and α-conotoxin M1 (γPhe172/δIle178) (Sine, 1993; Sine et al., 1995; Prince and Sine, 1996). To identify amino acids in this region that contribute to epibatidine selectivity we extended the γ/δ chimeric boundary in a C-terminal direction (Fig. 5). The first three chimeras, $\gamma 131\delta 225\gamma$, $\gamma 156\delta 225\gamma$, and $\gamma 163\delta 225\gamma$, produced epibatidine affinities very near that produced by $\gamma 1178225\gamma$, but extending the chimeric boundary to form $\gamma 1718225\gamma$ increased affinity to within 2-fold of that produced by the wild-type γ -subunit. In the region $\gamma 164-171/$ δ166–177, there is little homology between the subunits and the δ sequence contains an insertion of four amino acids relative to γ . This lack of homology makes it impossible to produce a meaningful alignment of this section of the subunits and for this reason we did not attempt to probe this region with further chimeras or point mutants.

Moving further in the C terminal direction, we found that the chimeras $\gamma 177\delta 225\gamma$, $\gamma 186\delta 225$, and $\gamma 189\delta 225\gamma$ gave essentially identical epibatidine affinity to $\gamma 171\delta 225\gamma$ (Fig. 5). However, when residue $\gamma Pro190$ (equivalent to $\delta Ala196$) was surpassed, by generating $\gamma 190\delta 225\gamma$, a small ~ 2 -fold increase in affinity was noted, yielding a $K_{\rm d}$ identical to that conferred by the wild-type γ -subunit. To assess the importance of $\gamma Pro190$ and $\delta Ala196$, we made the corresponding point mutations. As predicted from the chimera experiments, $\gamma P190A$ slightly decreased epibatidine affinity, whereas $\delta A196P$ slightly increased affinity (Fig. 5). Thus, the residue pair $\gamma Pro190/\delta Ala196$ is a potential minor determinant of epibatidine selectivity.

Effects of Previously Identified Ligand Selectivity **Determinants.** Previous studies in our laboratories used chimeras to examine the site-selective ligands metocurine, α-conotoxin M1, carbamylcholine, and Waglerin and identified determinants of binding selectivity in the γ -, δ -, and ε-subunits of the nAChR (Sine, 1993; Sine et al., 1995; Prince and Sine, 1996; Bren and Sine, 1997; Molles et al., 2002a). In the present study, two known ligand selectivity determinants γ Ser111/ δ Tyr113 (an α -conotoxin M1 determinant) and γTyr117/δThr119 (a metocurine determinant) also influenced the binding of epibatidine, and we were interested to know whether other residues that determine the binding site selectivity of α -conotoxin M1, carbamylcholine and metocurine also affected epibatidine selectivity. To test this possibility, we expressed a series of point mutant γ - or δ -subunits as $\alpha H_2 \beta \chi_2$ complexes and determined epibatidine affinity under desensitizing conditions (Fig. 6). The first pair of point mutations we considered was the carbamylcholine and Waglerin determinant γC115Y/δY117C. As predicted from our chimera experiments, neither mutation produced a significant change in epibatidine selectivity. Next, we examined the metocurine selectivity determinants γIle116/δVal118 and γ Ser161/ δ Lys163. Point mutations at either of these positions (yI116V/8V118I and yS161K/8K163S) produced essentially the same effects: a small (2- to 3-fold) decrease in epibatidine affinity with the γ mutations and no effect with the δ mutations. Finally, we examined the residue pair γ Phe172/ δ Ile178, which is a major determinant of α -conotoxin M1 selectivity. Again, we noted a small decrease (2fold) in affinity with γ F172I but found that the corresponding δ point mutation also decreased affinity. Coupled with data from the present chimera experiments, these findings indicate that none of the ligand selectivity determinants examined in this series of experiments make major contributions to epibatidine selectivity.

Subunits Containing Multiple Point Mutations. The preceding chimera experiments identify three pairs of residues as major determinants of epibatidine selectivity. None of these residues by itself fully converts γ to δ affinity and vice versa, so we reasoned that some combination of these

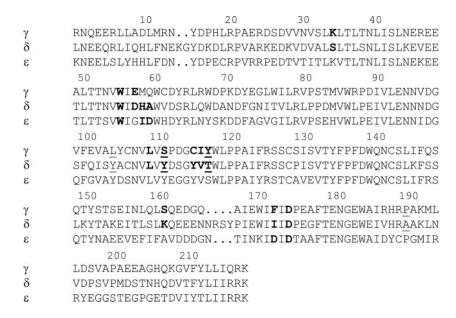


Fig. 3. Alignment of the N-terminal domains of the γ - and δ -subunits. Shaded residues are those identified as binding site determinants in previous chimera or affinity labeling studies. Bold, underlined residues are putative epibatidine selectivity determinants identified in the present study.

residues must be necessary. We therefore constructed a series of γ -subunits containing point mutations at two or more candidate residues and determined epibatidine affinity when expressed as $\alpha_{2\beta}\gamma_2$ complexes. Our first construct was the double point mutant yL104Y+Y117T, which decreased epibatidine affinity by approximately the sum of the contributions of the corresponding single point mutations (Fig. 7). Next, we added γ S111Y to form the triple point mutant γL104Y+S111Y+Y117T, but this yielded affinity similar to that of γ L104Y+Y117T. To probe further potential contributions by our most C-terminal residue pair γPro190/δAla196, we also constructed the quadruple point mutant subunit γL104Y+I116V+Y117T+P190A. However, expression levels yielded by this construct were too low to determine epibatidine affinity. Next, we examined the effects of mutating the curare selectivity determinants at positions γ 116 and γ 161. Although these residues were not highlighted by our chimera study and did not increase affinity when introduced into the δ -subunit, we reasoned that either they might have a γ -subunit specific effect on epibatidine affinity or they might re-

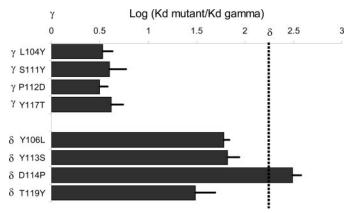


Fig. 4. Point mutation of epibatidine determinants in the region $\gamma 100 - \gamma 117$. Point mutant subunits were constructed as described under *Materials and Methods* and were expressed as subunit-omitted complexes in HEK 293 cells. Epibatidine affinity is expressed relative to that conferred by wild-type γ . Thus, γ affinity corresponds to the y-axis position, whereas δ affinity is indicated by the dashed line. The data are the means of at least three experiments; error bars indicate S.E.M.



Fig. 5. Dissection of epibatidine determinants in the region $\gamma 131-\gamma 190$. Chimeras of the form $\gamma n\delta 225\gamma$ and point mutant subunits were constructed as described under *Materials and Methods* and were expressed as subunit-omitted complexes in HEK 293 cells. Epibatidine affinity is expressed relative to that conferred by wild-type γ . Thus, γ affinity corresponds to the y-axis position and wild-type δ affinity is indicated by the dashed line. The data are the means of at least three experiments; error bars indicate S.E.M.

quire other determinants to influence epibatidine selectivity. Synergistic interactions between selectivity determinants have been noted in several previous studies (Sine, 1993; Sine et al., 1995). To test this hypothesis, we constructed $\gamma L104Y+I116V+Y117T$, $\gamma L104Y+Y117T+S161K$, and $\gamma L104Y+I116V+Y117T+S161K$. None of these constructs conferred epibatidine affinity that was significantly different from that of $\gamma L104Y+Y117T$, confirming our initial hypothesis that $\gamma Ile116$ and $\gamma Ser161$ do not play a major role in determining epibatidine selectivity. Finally, we examined the effects of replacing the entire $\gamma 104-117$ segment with δ sequence. This construct conferred an affinity for epibatidine that approached within 2-fold of that conferred by wild-type δ , suggesting that additional determinants within the $\gamma 104-117/\delta 106-119$ region contribute to low-affinity δ -like binding (Figs. 7 and 8).

To further test our identified epibatidine selectivity determinants, we constructed a series of multiple point mutations in the δ -subunit. As shown in Figs. 7 and 8, the double point mutation $\delta L106Y+T119Y$ markedly increased epibatidine affinity to closely approach that conferred by the wild-type γ -subunit. However, consistent with our results from γ -subunit

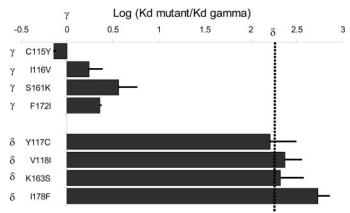


Fig. 6. Point mutation of α -conotoxin M1, metocurine, and carbamylcholine selectivity determinants. Point mutant subunits were constructed as described under *Materials and Methods* and were expressed as subunitomitted complexes in HEK 293 cells. Epibatidine affinity is expressed relative to that conferred by wild-type γ . Thus, γ affinity corresponds to the y-axis position, whereas δ affinity is indicated by the dashed line. The data are the means of at least three experiments; error bars indicate S.E.M.

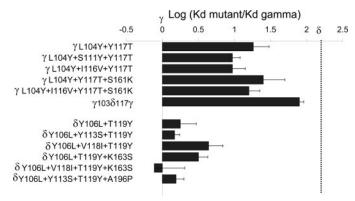
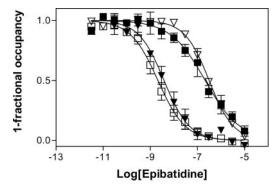



Fig. 7. Binding of epibatidine to subunit-omitted complexes harboring multiple point mutations. Epibatidine affinity was determined as described under *Materials and Methods* and is expressed relative to that conferred by wild-type γ . Thus, γ affinity corresponds to the y-axis position, whereas δ affinity is indicated by the dashed line. The data are the means of at least three experiments: error bars indicate S.E.M.

constructs, addition of $\delta Y113S,\,V118I,\,K163S$ to form the triple point mutants $\delta L106Y+Y113S+T119Y,\,\delta L106Y+V118I+T119Y,$ and $\delta L106Y+T119Y+K163S$ and the quadruple point mutant $\delta L106Y+Y113S+T119Y+K163S$ produced only modest effects that did not significantly increase epibatidine affinity. Our final construct in this series, $\delta L106Y+Y113S+T119Y+A196P,$ yielded essentially identical affinity to that produced by the triple mutant $\delta L106Y+Y113S+T119Y.$ This result suggests that, at least in the δ -subunit, the role of the residue pair $\gamma Pro190/\delta Ala196$ may be more limited than suggested by our data from chimeras and single point mutant constructs.

Expression with Mouse \alpha-Subunit. Previous studies in our laboratories showed that the symmetrical binding sites of triplet receptors have ligand selectivity properties similar to those of the corresponding binding sites in native pentamers. (Sine and Claudio, 1991; Sine, 1993). Furthermore, we have demonstrated that substitution of the human α -subunit for its mouse counterpart increases expression but does not alter ligand selectivity (Prince and Sine, 1996). However, previous studies using these model systems have only addressed ligand selectivity in the resting state of the receptor. Thus, to confirm that the epibatidine selectivity determinants identified in this study are also relevant in native pentamers, we expressed a range of point mutant subunits with complementary wild-type mouse subunits as full pentameric receptors. As expected, γ L104Y, γ S111Y, and γ Y117T increased the K_d of the high-affinity component of pentamer binding curves but were without affect on the low-affinity component. On the other hand, δY106L, δY113S, and δT119Y all decreased the $K_{\rm d}$ of the low-affinity component of the pentamer curve without affecting the high-affinity component (Fig. 9, Table 1). Overall, the magnitudes of the affinity changes observed in this series of experiments were slightly lower than predicted from our results with subunit-omitted complexes; nonetheless, these data provide strong support for the involvement of key residues in the region $\gamma 104-117/\delta 106-119$ in the epibatidine selectivity of native pentamers.

Homology Modeling and Computational Docking of **Epibatidine.** To explain in terms of binding site structure how the identified selectivity determinants contribute to epibatidine binding, we constructed a homology model of the high affinity α - γ binding site based on the atomic structure of AChBP and the experimentally-determined sequence alignment (Sine et al., 2002). After aligning the AChBP template sequence with those of the fetal α and γ sequences, we used the

Fig. 8. Binding of epibatidine to desensitized subunit-omitted complexes containing multipoint mutant complexes. Binding of epibatidine was measured as described in the legend to Fig. 1. The data are the mean \pm S.E.M. of three experiments and the curves are fits of eq. 1: $\alpha_2\beta\gamma_2$, \Box ; $\alpha_2\beta\delta_2$, ∇ ; $\alpha_2\beta(\gamma103\delta117\gamma)_2$, \blacksquare ; $\alpha_2\beta(\delta L106Y+T119Y)_2$, \blacktriangledown .

modeling program JACKAL (http://trantor.bioc.columbia.edu) to obtain a structural model of the α - γ site. To model the seven-residue insertion present in the γ -subunit, which has no counterpart in AChBP, we tried several alignments and chose the only one that produced a pair-wise interaction between γ Lys34 and γ Phe172 in the final structure (Fig. 10); this pair of residues was shown to interact and be essential for proper subunit folding and low-affinity conotoxin M1 binding characteristic of the native α - γ site (Sine et al., 1995).

We next used AUTODOCK 3.0.3 to dock epibatidine into the resulting structural model of the α - γ site, assigning epibatidine a charge of + 1. The resulting complex shows the polar face of epibatidine juxtaposed to α Trp149 in the center of the binding site and the nonpolar face oriented toward γ Tyr117, also deep in the binding site. The epibatidine selectivity determinant γLeu104 contacts αTrp149 in an apparently hydrophobic interaction and seems to position the indole ring for optimal contact with both nitrogen atoms of epibatidine; the pyridine nitrogen of epibatidine is close enough to hydrogen bond with the indole nitrogen of α Trp149, whereas the azabicyclo nitrogen is positioned over the π -electron cloud of α Trp149. The selectivity determinant γ Tyr117 closely apposes the hydrophobic face of epibatidine, and the position of its phenol side chain is constrained by the third major selectivity determinant vSer111. Thus, a molecular continuum is established from γLeu104, γTrp149, epibatidine, γTyr117, and γSer111, yielding a high-affinity receptor-ligand complex.

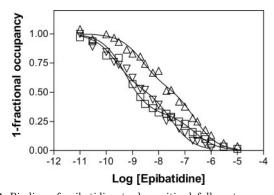


Fig. 9. Binding of epibatidine to desensitized full-pentamer receptors containing point mutations at epibatidine selectivity determinants. The data are representative of at least three similar experiments, and the curves represent fits of eq. 2 to the data: wild-type $\alpha_2\beta\delta\gamma$, \Box ; $\alpha_2\beta\delta+\gamma Y117T$, \triangle ; and $\alpha_2\beta\gamma+\delta T119Y$, ∇ . Parameters from multiple experiments are given in Table 1.

TABLE 1
Binding of epibatidine to desensitized full pentameric receptors containing all mouse subunits

The parameters [dissociation constants K_1 and K_2 and proportion (P) of sites with affinity K_1] are derived from fits of eq. 2 to our data and are expressed as mean \pm S.E. Data are the mean of three to five experiments.

Wild-Type Subunit	Mutant Subunit	K_1	K_2	P
	nM			
$\alpha_2\beta\delta\gamma$		0.49 ± 0.04	201 ± 36	0.66 ± 0.03
$\alpha_2 \beta \delta +$	$\gamma L104Y$	0.84 ± 0.09	168 ± 60	0.62 ± 0.04
_	γ S111Y	0.66 ± 0.12	180 ± 18	0.42 ± 0.03
	$\gamma Y117T$	1.92 ± 0.04	184 ± 59	0.47 ± 0.05
$\alpha_2\beta\gamma+$	$\delta Y106L$	0.48 ± 0.1	59 ± 6.8	0.55 ± 0.06
	δ Y113S	0.36 ± 0.03	83 ± 11	0.534 ± 0.09
	$\delta T119Y$	0.61 ± 0.2	71 ± 25	0.58 ± 0.1

Discussion

Previous studies in our laboratory demonstrated a 250-fold affinity difference for epibatidine between the two agonist binding sites of muscle nAChRs (Prince and Sine, 1998b). Herein, we delineate the sequence differences between the γ and δ -subunits that are responsible for this selectivity. Our results suggest that a minimum of three regions of γ and δ contribute to epibatidine selectivity.

The first and most important region identified in this study is located between residues 104 and 117 of the γ-subunit (equivalent to δ 106–119; Fig. 3) and contains three γ/δ sequence differences that contribute to epibatidine selectivity: yLeu104/ δTyr106, γSer111/δTyr113, and γTyr117/δThr119. That this segment mediates the majority of epibatidine selectivity is perhaps not surprising. This region is rich in previously identified agonist and antagonist selectivity determinants and is the target of several affinity-labeling agents. The epibatidine selectivity determinant identified here as closest to the N terminus, γLeu104/δTyr106, was not previously implicated in ligand binding or in contributing to site-selectivity at muscle type receptors. However, studies on the β_2 - and β_4 -subunits from neuronal nAChRs show the analogous residue is a determinant of cytisine and tetramethylammonium affinity (Figl et al., 1992). γSer111/δTyr113, on the other hand, was identified as a determinant of α -conotoxin M1 selectivity, but for conotoxin, this sequence difference contributes to high-affinity binding to the α - δ interface and low-affinity binding at the α - γ interface (Sine et al., 1995); i.e., it confers selectivity opposite that seen with epibatidine. The final epibatidine determinant in this region, √Tyr117/8Thr119, was also identified as a major determinant of metocurine selectivity (Sine, 1993) and has been suggested to make direct contact with this competitive antagonist (Fu and Sine, 1994; Gao et al., 2003). Also within this region are γ Leu109/ δ Leu111, which was recently shown to be labeled by the competitive antagonist 4-[(3-trifluoromethyl)-3H-diazirin-3-

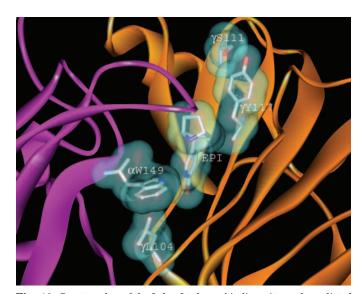


Fig. 10. Structural model of the fetal α - γ binding site and predicted docking orientation of epibatidine. Receptor subunits are rendered as secondary structures, with the α -subunit highlighted in magenta and the γ -subunit in orange. Side chains of key binding site residues are shown in stick representation with contact surfaces shown in light blue. Note that the polar surface of epibatidine faces α Trp149 and that the hydrophobic surface faces γ Tyr117; note also the molecular continuum formed by the highlighted residues and bound epibatidine.

yl]benzoylcholine (Chiara et al., 2003), γ Cys115/ δ Tyr117, which contributes to carbamylcholine (Prince and Sine, 1996) and Waglerin (Molles et al., 2002b) selectivity, and γ Ile116/ δ Val118, which contributes to metocurine selectivity (Sine, 1993). Overall, our present results, combined with findings from previous studies, demonstrate a major role for γ 104–117/ δ 106–119 in conferring ligand binding selectivity at the nAChR.

In the δ -subunit, mutations of δ Tyr106, δ Tyr113, and δThr119 to their γ-subunit equivalents results in an almost full conversion to high affinity α - γ -like binding, suggesting that they represent the major determinants of epibatidine selectivity. However, introducing the equivalent δ residues into the γ -subunit has more modest effects, and we found it necessary to replace the entire $\gamma 104-117$ segment with δ sequence to effect a full γ -to- δ affinity conversion. One explanation for the asymmetric effects of mutations of epibatidine determinants is that the low affinity conferred by the δ -subunit may result from interactions between its residues and other binding site components, primarily in the α -subunit. In the δ -subunit, replacing discrete residues with γ sequence might abolish such interdependent interactions and lead to γ -like affinity. By contrast, in the γ -subunit, replacing discrete residues with δ sequence might not restore the interactions that cause low affinity, perhaps because of subtle differences in the three-dimensional scaffold caused by local residue differences. Introduction of δ sequence between residues 104 and 117 may therefore be required to correctly orient the selectivity determinants within the binding site.

To explain our findings in terms of binding site structure, we generated a structural model of the nAChR α - γ binding site and docked epibatidine to it. We hypothesize that because the template upon which our model is based, AChBP, has been suggested to have been crystallized in a desensitized-like conformation (Fruchart-Gaillard et al., 2002), our computationally derived structure should provide useful information about binding site structure in the desensitized state. Consistent with previous structural models of the receptor (Le Novere et al., 2002; Molles et al., 2002b; Sine et al., 2002; Chiara et al., 2003; Le Novere, 2004), the agonist binding sites in our model are formed by the convergence of a series of mostly aromatic residues from the α -subunit (Tyr93, Trp149, Tyr190, Cys192, Cys193, and Tyr198) and a series of complementary residues from the non- α -subunit. In our epibatidine-docked complex, this non- α contribution comprises several residues contained within an extended hairpin structure, formed by residues $\gamma Asn94-Ser127$, which passes diagonally through the extracellular domain of the subunit. Docking epibatidine to our structural model reveals that the ligand orients such that both its azabicyclo- and pyridinenitrogens are positioned to interact with α Trp149, with the hydrophobic face of epibatidine closely apposed to the epibatidine selectivity determinant γ Tyr117. Additional hydrophobic contacts from the γ-subunit include γLeu109 and γLeu119. The overall findings are consistent with previous mutagenesis and affinity labeling studies: αTrp149 is a strong candidate for stabilizing the quaternary ammonium moiety of nicotinic agonists and is labeled by the competitive antagonist affinity probe p-N,N-(dimethylamino)phenyldiazonium fluoroborate (Dennis et al., 1988 Zhong et al., 1998). Likewise, γLeu109, γLeu119, and γTyr117 have been identified as candidate binding site residues by affinity labeling (Wang et al., 2000) or mutagenesis studies (Sine, 1993, 1997; Chiara et al., 1999). Furthermore, the results from our docking studies, both in terms of ligand orientation and the roles of individual amino acid residues, are in close agreement with the crystal structure of nicotine-bound AChBP (Celie et al., 2004).

The two other epibatidine selectivity determinants identified in this study do not seem to contact the agonist directly. $\gamma \text{Leu}104$ is at the periphery of the binding site but seems to make hydrophobic interactions with $\alpha \text{Trp}149$, perhaps positioning its indole ring optimally for interaction with epibatidine. Likewise, Ser111 is at the periphery of the binding site, being located near the apex of the $\gamma \text{Asn}94\text{-Ser}127$ hairpin, but is positioned very close to $\gamma \text{Tyr}117$ and thus may govern the orientation of the phenol side chain to stabilize the uncharged face of epibatidine through hydrophobic contacts. Thus, the selectivity of the α - γ and α - δ for epibatidine can be rationalized in terms of a series of direct and indirect interactions between receptor and ligand, with high affinity achieved through a molecular continuum between epibatidine and $\gamma \text{Leu}104$, $\alpha \text{Trp}149$, $\gamma \text{Tyr}117$, and $\gamma \text{Ser}111$.

We also uncovered two further determinants that make relatively small contributions to epibatidine selectivity. The first of these is in the segment $\gamma 164-171$, near $\gamma Ser 161/$ δLys163, which is a determinant of metocurine selectivity (Sine, 1993). Unfortunately, a four-residue insertion in δ within this region makes sequence alignments very difficult, and we were therefore unable to identify the precise residue mediating epibatidine selectivity. The second minor determinant is the sequence difference γPro190/δAla196 and, of the non- α -subunit residues thus far implicated in ligand selectivity for the nAChR, it is the closest to the C terminus. In our three-dimensional model of the receptor, both the γ 164– 171/δ166-177 segment and γPro190/δAla196 are distant from the putative ligand docking site and are located on the outside face of the subunit, midway between the two neighboring subunits. Thus, although these determinants are unlikely to participate in its final docking site, they may regulate the entry of epibatidine into the agonist binding cleft. On the other hand, long distance allosteric effects may be responsible for their contributions to selectivity.

In the adult muscle nAChR, the ϵ -subunit replaces γ . In our original studies, we demonstrated that epibatidine also selects by 200- to 300-fold between the binding sites of the adult receptorm with the α - ϵ interface displaying high affinity and the α - δ site displaying low affinity (Prince and Sine, 1998b). It is interesting that ϵ diverges from γ at all three epibatidine determinants within the 104-117 region (Fig. 3). Like δ , ϵ has tyrosine at residues 104 and 111, whereas at residue 117, ϵ has a serine. This sequence divergence strongly suggests that the elements conferring high epibatidine affinity to the α - ϵ site differ from those responsible for high affinity at the α - γ interface. Likewise, whereas γ Ile116, γ Tyr117, and γ Ser161 mediate the high-affinity binding of metocurine to the α - γ interface (Sine, 1993), ϵ Ile58 and ϵ Asp59 mediate high-affinity binding to the α - ϵ interface (Bren and Sine, 1997). In the latter study, it was suggested that at both interfaces, metocurine docked with one of its quaternary nitrogens stabilized by α -subunit residues but that the orientation of the second quaternary group differed between the α - γ and α - ϵ interfaces such that it was stabilized by either $\gamma Tyr117$ or $\epsilon Ile58$ and $\epsilon Asp59$. Likewise, epibatidine may dock in different orientations in the α - γ and α - ϵ binding sites.

In summary, our results indicate that three segments of the nAChR γ - and δ -subunits contribute to epibatidine selectivity in the desensitized state. The region nearest the N terminus, located between residues 104 and 117 of the γ -subunit (δ 106–119), accounts for most of the affinity difference between the α - γ and α - δ binding sites. Examination of homology models of nAChR binding sites reveals that γ 104–117/ δ 106–119 is located near the predicted docking site for agonists and suggests that residues within this segment of the non- α -subunits may influence epibatidine binding via interaction with residues from the α -subunits as well as by direct contact with the ligand.

Acknowledgments

We thank Angela Thistlethwaite and Nina Bren for their excellent technical support.

References

- Blount P and Merlie JP (1989) Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. *Neuron* **3**:349–357.
- Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, and Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. *Nature (Lond)* 411:269–276.
- Bren N and Sine SM (1997) Identification of residues in the adult nicotinic acetylcholine receptor that confer selectivity for curariform antagonists. *J Biol Chem* **272**:30793–30798.
- Celie PH, Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, and Sixma TK (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. *Neuron* 41:907–914.
- Chiara DC and Cohen JB (1997) Identification of amino acids contributing to high and low affinity D-tubocurarine sites in the *Torpedo* nicotinic acetylcholine receptor. J Biol Chem 272:32940–32950.
- Chiara DC, Middleton RE, and Cohen JB (1998) Identification of tryptophan 55 as the primary site of [³H]nicotine photoincorporation in the gamma -subunit of the Torpedo nicotinic acetylcholine receptor. *FEBS Lett* **423**:223–226.
- Chiara DC, Trinidad JC, Wang D, Ziebell MR, Sullivan D and Cohen JB (2003) Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist. *Biochemistry* 42:271–283.
- Chiara DC, Xie Y, and Cohen JB (1999) Structure of the agonist-binding sites of the Torpedo nicotinic acetylcholine receptor: affinity-labeling and mutational analyses identify gamma Tyr-111/delta Arg-113 as antagonist affinity determinants. Biochemistry 38:6689-6698.
- Czajkowski C and Karlin A (1995) Structure of the nicotinic receptor acetylcholine-binding site. Identification of acidic residues in the δ subunit within 0.9 nm of the subunit-binding site disulfide. *J Biol Chem* **270**:3160–3164.
- Dennis M, Giraudat J, Kotzyba-Hibert F, Goeldner M, Hirth C, Chang JY, Lazure C, Chretien M, and Changeux JP (1988) Amino acids of the *Torpedo marmorata* acetylcholine receptor α subunit labeled by a photoaffinity ligand for the acetylcholine binding site. *Biochemistry* 27:2346–2357.
- Figl A, Cohen BN, Quick MW, Davidson N, and Lester HA (1992) Regions of beta 4.beta 2 subunit chimeras that contribute to the agonist selectivity of neuronal nicotinic receptors. FEBS Lett 308:245–248.
- Frish MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, et al. (1998) Gaussian 98. Gaussian Inc., Pittsburgh, PA.
- Fruchart-Gaillard C, Gilquin B, Antil-Delbeke S, Le Novere N, Tamiya T, Corringer PJ, Changeux JP, Menez A, and Servent D (2002) Experimentally based model of a complex between a snake toxin and the alpha 7 nicotinic receptor. *Proc Natl Acad Sci USA* **99**:3216–3221.
- Fu DX and Sine SM (1994) Competitive antagonists bridge the α-γ subunit interface of the acetylcholine receptor through quaternary ammonium-aromatic interactions. J Biol Chem 269:26152–26157.
- Gao F, Bren N, Little A, Wang HL, Hansen SB, Talley TT, Taylor P, and Sine SM (2003) Curariform antagonists bind in different orientations to acetylcholine binding protein. J Biol Chem 278:23020–23026.
- Le Novere N (2004) Ligand gated ion channel database. http://www.pasteur.fr/recherche/banques/LGIC/cys-loop.html
- Le Novere N, Grutter T, and Changeux JP (2002) Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca²⁺-binding sites. *Proc Natl Acad Sci USA* **99:**3210–3215.
- Martin M, Czajkowski C, and Karlin A (1996) The contributions of aspartyl residues in the acetylcholine receptor γ and δ subunits to the binding of agonists and competitive antagonists. *J Biol Chem* **271**:13497–13503.
- Molles BE, Rezai P, Kline EF, McArdle JJ, Sine SM, and Taylor P (2002a) Identification of residues at the α and ϵ subunit interfaces mediating species selectivity of waglerin-1 for nicotinic acetylcholine receptors. J Biol Chem 277:5433–5440.
- Molles BE, Tsigelny I, Nguyen PD, Gao SX, Sine SM, and Taylor P (2002b) Residues in the epsilon subunit of the nicotinic acetylcholine receptor interact to confer

- selectivity of waglerin-1 for the alpha-epsilon subunit interface site. *Biochemistry* 41:7895–7906.
- Morris GM, Goodsell DS, Huey R, and Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: parallel applications of AUTODOCK 2.4. J Comput-Aided Mol Des 10:293–304.
- Pearlman DA, Case DA, Caldwell JW, Ross WR, Cheatham TE 3rd, DeBold S, Ferguson D, Seibel G, and Kollman P (1995) AMBER, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Comp Phys Commun 91:1–41.
- Prince RJ and Sine SM (1996) Molecular dissection of subunit interfaces in the acetylcholine receptor. Identification of residues that determine agonist selectivity. J Biol Chem 271:25770-25777.
- Prince RJ and Sine SM (1998a) Epibatidine activates muscle acetylcholine receptors with unique site selectivity. *Biophys J* **75:**1817–1827.
- Prince RJ and Sine SM (1998b) Epibatidine binds with unique site and state selectivity to muscle nicotinic acetylcholine receptors. *J Biol Chem* **273**:7843–7849.
- Sine SM (1993) Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine curare selectivity. Proc Natl Acad Sci USA 90:9436-9440.
- Sine SM (1997) Identification of equivalent residues in the γ , δ , and ϵ subunits of the nicotinic receptor that contribute to α -bungarotoxin binding. *J Biol Chem* **272**: 23521–23527.
- Sine SM (2002) The nicotinic receptor ligand binding domain. J Neurobiol ${\bf 53:}431-446$

- Sine SM and Claudio T (1991) γ and δ -subunits regulate the affinity and the cooperativity of ligand binding to the acetylcholine receptor. *J Biol Chem* **266**: 19369–19377.
- Sine SM, Kreienkamp HJ, Bren N, Maeda R, and Taylor P (1995) Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of determinants of alpha-conotoxin M1 selectivity. Neuron 15:205–211.
- Sine SM, Wang HL, and Bren N (2002) Lysine scanning mutagenesis delineates structural model of the nicotinic receptor ligand binding domain. *J Biol Chem* **277**:29210–29223.
- Wang D, Chiara DC, Xie Y, and Cohen JB (2000) Probing the structure of the nicotinic acetylcholine receptor with 4-benzoylbenzoylcholine, a novel photoaffinity competitive antagonist. J Biol Chem 275:28666–28674.
- Xiang Z and Honig B (2001) Extending the accuracy limits of prediction for sidechain conformations. J Mol Biol 311:421-430.
- Xiang Z, Soto CS, and Honig B (2002) Evaluating conformational free energies: the colony energy and its application to the problem of loop prediction. *Proc Natl Acad Sci USA* 99:7432–7437.
- Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, and Dougherty DA (1998) From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. *Proc Natl Acad Sci USA* 95:12088–12093.

Address correspondence to: Dr. Richard J. Prince, School of Biological Sciences, University of Manchester, G38 Stopford Bldg., Oxford Rd, Manchester M13 9PT, United Kingdom. E-mail: richard.prince@man.ac.uk